Approximation of the multi-m-Jensen-quadratic mappings and a fixed point approach

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of multi-m-Jensen mappings

In this article, we introduce the multi-$m$-Jensen mappings and characterize them as a single equation. Using a fixed point theorem, we study the generalized Hyers-Ulam stability for such mappings. As a consequence, we show that every multi-$m$-Jensen mappings (under some conditions) is hyperstable.

متن کامل

Almost Multi-Cubic Mappings and a Fixed Point Application

The aim of this paper is to introduce $n$-variables mappings which are cubic in each variable and to apply a fixed point theorem for the Hyers-Ulam stability of such mapping in non-Archimedean normed spaces. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes are presented.

متن کامل

Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach

Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}

متن کامل

A fixed point approach to the stability of additive-quadratic-quartic functional equations

In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.

متن کامل

approximate a quadratic mapping in multi-banach spaces, a fixed point approach

begin{abstract}using the fixed point method, we prove the generalized hyers--ulam--rassiasstability of the following functional equation in multi-banach spaces:begin{equation} sum_{ j = 1}^{n}fbig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}big) =(n-6) fbig(sum_{ i = 1}^{n} x_{i}big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}end{abstract}

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Slovaca

سال: 2021

ISSN: 1337-2211,0139-9918

DOI: 10.1515/ms-2017-0456